

1

R programming Dr. Labeed Al-Saad

R - Packages

R packages are a collection of R functions, complied code and sample data.

They are stored under a directory called "library" in the R environment. By

default, R installs a set of packages during installation. More packages are

added later, when they are needed for some specific purpose. When we start

the R console, only the default packages are available by default. Other

packages which are already installed have to be loaded explicitly to be used

by the R program that is going to use them.

All the packages available in R language are listed at R Packages.

Below is a list of commands to be used to check, verify and use the R

packages.

Check Available R Packages

Example: Get library locations containing R packages

> .libPaths()
[1] "C:/Users/hp/AppData/Local/R/win-library/4.4"
[2] "C:/Program Files/R/R-4.4.0/library"

Example: Get the list of all the packages installed:

> library()

When we execute the above code, it produces the following result. It may

vary depending on the local settings of your pc. In our case, the results will

be:

Packages in library ‘C:/Users/hp/AppData/Local/R/win-library/4.4’:

abind Combine Multidimensional Arrays

AnnotationDbi Manipulation of SQLite-based annotations

 in Bioconductor

askpass Password Entry Utilities for R, Git, and

 SSH

base64enc Tools for base64 encoding

BH Boost C++ Header Files

Biobase Biobase: Base functions for Bioconductor

BiocGenerics S4 generic functions used in Bioconductor

BiocIO Standard Input and Output for

2

R programming Dr. Labeed Al-Saad

Get all packages currently loaded in the R environment

> search()
 [1] ".GlobalEnv" "tools:rstudio" "package:stats
"
 [4] "package:graphics" "package:grDevices" "package:utils
"
 [7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

When we execute the above code, it produces the above result. It may vary

depending on the local settings of your pc.

Install a New Package

There are two ways to add new R packages. One is installing directly from

the CRAN (Comprehensive R Archive Network) directory and another is

downloading the package to your local system and installing it manually.

Install directly from CRAN

The following command gets the packages directly from CRAN webpage

and installs the package in the R environment. You may be prompted to

choose a nearest mirror. Choose the one appropriate to your location.

 install.packages("Package Name")

> # Install the package named "XML".
> install.packages("XML")

WARNING: Rtools is required to build R packages but is not curren
tly installed. Please download and install the appropriate versio
n of Rtools before proceeding:

https://cran.rstudio.com/bin/windows/Rtools/
Installing package into ‘C:/Users/hp/AppData/Local/R/win-library/
4.4’
(as ‘lib’ is unspecified)

 There is a binary version available but the source version
 is later:
 binary source needs_compilation
XML 3.99-0.16.1 3.99-0.17 TRUE

 Binaries will be installed
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.4/XML_
3.99-0.16.1.zip'
Content type 'application/zip' length 3103340 bytes (3.0 MB)

3

R programming Dr. Labeed Al-Saad

downloaded 3.0 MB

package ‘XML’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in
 C:\Users\Public\Documents\iSkysoft\CreatorTemp\RtmpWeHl94\
downloaded_packages

Install package manually

Go to the link R Packages to download the package needed. Save the

package as a .zip file in a suitable location in the local system.

Now you can run the following command to install this package in the R

environment.

install.packages(file_name_with_path, repos = NULL, type = "source")

Example:

> # Install the package named "XML"
>
> install.packages("E:/XML_3.98-1.3.zip", repos = NULL, typ
e = "source")

Load Package or Library

Before a package can be used in the code, it must be loaded to the current

R environment. You also need to load a package that is already installed

previously but not available in the current environment. A package is loaded

using the following command:

> # Loading library called "xlsx"
>
> library("xlsx")

Viewing the contents of loaded library

In R, you can view the contents of a library (also known as a package) using

the ls() function or by exploring the package's documentation. Here's how you

can do it:

> ls("package:xlsx")

4

R programming Dr. Labeed Al-Saad

 [1] "addAutoFilter" "addDataFrame"
 [3] "addHyperlink" "addMergedRegion"
 [5] "addPicture" "Alignment"
 [7] "autoSizeColumn" "Border"
 [9] "BORDER_STYLES_" "CB.setBorder"
[11] "CB.setColData" "CB.setFill"
[13] "CB.setFont" "CB.setMatrixData"
[15] "CB.setRowData" "CELL_STYLES_"
[17] "CellBlock" "CellProtection"
[19] "CellStyle" "createCell"
[21] "createCellComment" "createFreezePane"
[23] "createRange" "createRow"
[25] "createSheet" "createSplitPane"
[27] "createWorkbook" "DataFormat"
[29] "Fill" "FILL_STYLES_"
[31] "Font" "forceFormulaRefresh"
[33] "forcePivotTableRefresh" "get_java_tmp_dir"
[35] "getCellComment" "getCells"
[37] "getCellStyle" "getCellValue"
[39] "getRanges" "getRows"
[41] "getSheets" "HALIGN_STYLES_"
[43] "INDEXED_COLORS_" "is.Alignment"
[45] "is.Border" "is.CellBlock"
[47] "is.CellProtection" "is.CellStyle"
[49] "is.DataFormat" "is.Fill"
[51] "is.Font" "loadWorkbook"
[53] "printSetup" "read.xlsx"
[55] "read.xlsx2" "readColumns"
[57] "readRange" "readRows"
[59] "removeCellComment" "removeMergedRegion"
[61] "removeRow" "removeSheet"
[63] "saveWorkbook" "set_java_tmp_dir"
[65] "setCellStyle" "setCellValue"
[67] "setColumnWidth" "setPrintArea"
[69] "setRowHeight" "setZoom"
[71] "VALIGN_STYLES_" "write.xlsx"
[73] "write.xlsx2"

You can also explore the documentation of a package to see its contents by

Using help() or ? to Explore Documentation in the help tab (down right

window of RStudio).

> # Explore the documentation of package in help tab
>
> help(package = "xlsx")
>
> # Using ? to get help (this is used to get help of everyt
hing)
> ? "xlsx"

5

R programming Dr. Labeed Al-Saad

Detaching a Package

you can detach a package from the search path, which effectively removes

its functions and datasets from your current R session. Use

the detach() function to remove a package from the search path:

> # Viewing current loaded packages
>
> search()
 [1] ".GlobalEnv" "package:xlsx" "tools:rstudio
"
 [4] "package:stats" "package:graphics" "package:grDev
ices"
 [7] "package:utils" "package:datasets" "package:metho
ds"
[10] "Autoloads" "package:base"
>
> # Detaching “xlsx” package
>
> detach("package:xlsx", unload = TRUE)
>
> # Viewing loaded packages after detaching “xlsx” package
>
> search()
 [1] ".GlobalEnv" "tools:rstudio" "package:stats
"
 [4] "package:graphics" "package:grDevices" "package:utils
"
 [7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

 "package:dplyr": Specifies the package to detach.

 unload = TRUE: Ensures the package is unloaded from memory (optional but

recommended).

What we need to work with Bioinformatics in R?

 Install R and RStudio.

 Setup Bioconductor (BiocManager package).

 Install key Bioinformatics packages (e.g., Biostrings, ShortRead, etc..)

6

R programming Dr. Labeed Al-Saad

What are Bioconductor?

Bioconductor is an open-source R-based platform for bioinformatics and

computational biology. It provides specialized tools for analyzing high-

throughput genomic, proteomic, and other omics data. Key features include:

 Packages for DNA-seq, RNA-seq, ChIP-seq, single-cell analysis, and

more.

 Efficient data structures (e.g., GRanges, SummarizedExperiment).

 Reproducible workflows with built-in documentation.

 Integration with CRAN and GitHub.

How to install BiocManager package?

> #Installing BiocManager "("The Bioconductor package"

> # if condition used to check if it was installed, if not it wil

l install it

>

> if (!require("BiocManager")) install.packages("BiocManager")

How to install specific Bioconductor packages?

Bioconductor provides specialized bioinformatics packages for

genomics, proteomics, and other omics data analysis. We can install these

packages using the following installation function:

> BiocManager::install("ShortRead")

What are FASTA and FASTAQ files?

FASTA and FASTQ are standard file formats for storing biological sequence

data (DNA, RNA, or protein). Here’s a concise comparison:

1. FASTA Format

7

R programming Dr. Labeed Al-Saad

 Purpose: Stores nucleotide or protein sequences (without quality

scores).

 Structure:

o Header line: Starts with > (e.g., >gene123).

o Sequence data: Lines of bases (A,T,C,G for DNA; A,U,C,G for

RNA)

Example:

>sequence1

ATGCGATCGATCGATCGATCG

>sequence2

CGATCGATCGATCGATCGATA

2. FASTQ Format

 Purpose: Stores sequences with quality scores (common in high-

throughput sequencing, e.g., Illumina).

 Structure:

o Header line: Starts with @ (e.g., @read123).

o Sequence line: Bases (e.g., ATGCG...).

o Quality header: + (optional repeat of header).

o Quality scores: ASCII characters encoding accuracy per base

(e.g., ! = low quality, ~ = high quality).

Example:

@read1

ATGCGATCG

+

!!!!!~~~

8

R programming Dr. Labeed Al-Saad

Key Differences

Feature FASTA FASTQ

Quality ❌ No quality scores ✅ Includes quality scores

Header > @ and +

Use Case Reference genomes, proteins Raw sequencing reads

Example Use Cases

 FASTA: Reference genomes (e.g., human GRCh38), protein databases

(UniProt).

 FASTQ: Output from DNA sequencers (e.g., Illumina, Nanopore).

Note: FASTQ files are larger due to quality data. Tools like gzip compress

them efficiently.

How to work with FASTA and FASTAQ files in R?

To work with FASTA and FASTQ files in R, you’ll need specialized

packages, primarily from Bioconductor, as well as some CRAN packages.

Below is a structured guide to the essential tools and their functionalities:

1. Core Bioconductor Packages

A. Biostrings

 Purpose: Handles biological sequences (DNA, RNA, proteins) and

supports FASTA/FASTQ I/O.

 Key Functions:

o readDNAStringSet(), readAAStringSet(): Load sequences into

R.

o writeXStringSet(): Export sequences to FASTA/FASTQ files.

9

R programming Dr. Labeed Al-Saad

o Supports quality scores for FASTQ files (though ignored by

default in readDNAStringSet).

 Installation:

 > BiocManager::install("Biostrings")
 'getOption("repos")' replaces Bioconductor standard re

positories, see
 'help("repositories", package = "BiocManager")' for de

tails.
 Replacement repositories:
 CRAN: https://cran.rstudio.com/
 Bioconductor version 3.20 (BiocManager 1.30.25), R 4.4

.0 (2024-04-24
 ucrt)
 Installing package(s) 'Biostrings'
 trying URL 'https://bioconductor.org/packages/3.20/bio

c/bin/windows/contrib/4.4/Biostrings_2.74.1.zip'
 Content type 'application/zip' length 13732150 bytes (

13.1 MB)
 downloaded 13.1 MB

 package ‘Biostrings’ successfully unpacked and MD5 sum

s checked

B. ShortRead

 Purpose: Specialized for high-throughput sequencing data (e.g.,

Illumina FASTQ).

 Key Functions:

o readFastq(): Imports FASTQ files into a ShortReadQ object

(stores sequences, IDs, and quality scores).

o quality(): Extracts Phred quality scores.

 Installation:

> BiocManager::install("ShortRead")

2. Additional Useful Packages

A. insect (CRAN)

10

R programming Dr. Labeed Al-Saad

 Purpose: Lightweight FASTA/FASTQ parsing.

 Key Functions:

o readFASTA(), readFASTQ(): Returns sequences

as DNAbin objects or character strings.

 Installation:

> install.packages("insect")

B. qrqc (Bioconductor)

 Purpose: Quality control for FASTQ files.

 Key Functions:

o readSeqFile(): Summarizes nucleotide distributions, qualities,

and sequence lengths.

 Installation:

> BiocManager::install("qrqc")

3. Workflow Examples

Loading a FASTA File

> sequences <- readDNAStringSet("2_16Sd.fasta") # Returns
a DNAStringSet object
> sequences # Showing the sequences

DNAStringSet object of length 2:
 width seq names
[1] 1262 TAAAATTCGAGGTTCGGCCT...TTAATTTTCCGGGAATTGGC 2_16S
d
[2] 1170 CTAAAACTGAGAGGTTTCGG...TTGAACGGTGGGGAAACCTT 3_16S
d

Loading a FASTQ File

> library(ShortRead)
> fastq_data <- readFastq("4_16Sd.fastq") # Returns ShortR
eadQ object

11

R programming Dr. Labeed Al-Saad

> qual_scores <- quality(fastq_data) # Extract qu
ality scores
> qual_scores
class: FastqQuality
quality:
BStringSet object of length 1:
 width seq
[1] 980 3+*..>074B><FW21[U3'O[FP[E?T><:...575-5-=:0D/N=UN
I?N?KDD5:80---7

Converting FASTQ to FASTA

> library(ShortRead)
> fastq <- readFastq("4_16Sd.fastq")
> writeFasta(fastq, "output.fasta") # Requires explicit ou
tput filenames :cite[5]

4. Performance Considerations

 For large files, Biostrings and ShortRead are memory-efficient.

 insect offers binary (DNAbin) formats for reduced memory usage.

 Avoid seqinr::read.fasta() for large files—it’s slower than Biostrings

5. Summary of Recommended Packages

Task Package Key Function Notes

FASTA I/O Biostrings readDNAStringSet()

Handles

compressed

files.

FASTQ I/O ShortRead readFastq()
Retains quality

scores.

Lightweight

parsing
insect readFASTQ()

Good for small

files.

12

R programming Dr. Labeed Al-Saad

Task Package Key Function Notes

QC &

Preprocessing
Rfastp/qrqc rfastp()

Trimming,

filtering.

